

PUBLIC

Code Assessment

of the Savings USDS

Smart Contracts

September 30, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 13

8 Notes 14

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Savings USDS according to
Scope to support you in forming an opinion on their security risks.

MakerDAO implements Savings USDS, a tokenized implementation of a savings rate for USDS.

The most critical subjects covered in our audit are functional correctness, security of the assets and the
proxy/upgradability pattern. Security regarding all the aforementioned subjects is high.

The general subjects covered include the specification, adherence to the ERC standards and
optimisations.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Savings USDS repository based on
the documentation files.

The scope consists of the two solidity smart contracts:

./src/ISNst.sol

./src/SNst.sol

and the deployment scripts:

./deploy/SNstDeploy.sol

./deploy/SNstInit.sol

./deploy/SNstInstance.sol

Version 4As of , the files have been renamed as a result of a rebranding. The files below are in Scope:

./src/ISUsds.sol

./src/SUsds.sol

and

./deploy/SUsdsDeploy.sol

./deploy/SUsdsInit.sol

./deploy/SUsdsInstance.sol

The table below indicates the code versions relevant to this report and when they were received.

Version 5In , the following have been added to for the deployment of SUSDS token on L2:

./src/l2/SUsds.sol

./deploy/l2/SUsdsDeploy.sol

V Date Commit Hash Note

1 5 June 2024 eea30a68bbed2dc808698b19c96e8f4561701
294

Initial Version

2 11 June 2024 47bfad404140e6c0ab0c5867b3f8345eac4e75
56

After Intermediate Report

3 03 July 2024 79812602f210731bd4fba5e14e84ea2e27588
563

Finalization

4 27 August 2024 e5660deac9434c79d48ecde879c29f37fb89f2
dc

Renaming

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 5

https://github.com/makerdao/sdai/tree/eea30a68bbed2dc808698b19c96e8f4561701294
https://github.com/makerdao/sdai/tree/eea30a68bbed2dc808698b19c96e8f4561701294
https://github.com/makerdao/sdai/tree/47bfad404140e6c0ab0c5867b3f8345eac4e7556
https://github.com/makerdao/sdai/tree/47bfad404140e6c0ab0c5867b3f8345eac4e7556
https://github.com/makerdao/sdai/tree/79812602f210731bd4fba5e14e84ea2e27588563
https://github.com/makerdao/sdai/tree/79812602f210731bd4fba5e14e84ea2e27588563
https://github.com/makerdao/sdai/tree/e5660deac9434c79d48ecde879c29f37fb89f2dc
https://github.com/makerdao/sdai/tree/e5660deac9434c79d48ecde879c29f37fb89f2dc
https://chainsecurity.com

5 13 September
2024

e1d160aba17e95e8cec3d6bf50f310fbed9f28d
6

L2 Token

For the solidity smart contracts, the compiler version 0.8.21 was chosen.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, external dependencies,
and configuration files are not part of the audit scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MakerDAO implements a tokenized (ERC-4626) implementation of a savings rate for NST. Compared to
Savings DAI which utilized the Pot (DAI Saving Rate) this implementation combines all functionality in
one sNST contract. Savings NST is designed to be deployed using an ERC-1967 Proxy, for upgradability
the UUPS pattern is used.

2.2.1 sNST
The contract implements the sNST Token (ERC-4626, 18 decimals, "Savings NST") representing shares
of NST. chi, the rate accumulator increases over time based on the rate nsr, this allows the distribution
of savings reward. Calculation of the current rate can be done whenever needed.

Anyone may trigger an update of the savings rate and provision of the funds by calling drip(). The NST
tokens are provided as follows: Unbacked debt (sin) is allocated to the VOW and the sNST's dai
balance in the VAT increases. The tracking of the bad debt and total debt is updated accordingly. No
limits are enforced. Using the dai balance in the VAT accounting, NST tokens are exited through NstJoin
making these funds available at this contract.

An event Drip is emitted containing the new rate accumulator and the difference in balance.

Note that the debt at the VOW can be erased, if a sufficient surplus exists, by calling VOW.heal().

The sNST implements the tokenized vaults standard (ERC-4626) with the NST as the underlying asset to
track the users' share of the NST held by the sNST, which includes the rewards. The shares are
computed as normalized amounts with the formula depositedNstAmount * RAY / chi, where chi
is the always increasing rate accumulator which can be calculated in real-time.

The state-changing functions related to EIP 4626 are:

• deposit(uint256 assets, address receiver): Mints sNST to the receiver for the given
amount of NST transferred from msg.sender. Emits the Deposit and Transfer events.

• mint(uint256 shares, address receiver): Mints the amount of shares to the receiver,
transfers the corresponding amount of NST from msg.sender. Emits the Deposit and Transfer
events.

• withdraw(uint256 assets, address receiver, address owner): Withdraws the given
amount of NST to receiver while burning shares from the owner. Owner must be msg.sender,

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 6

https://github.com/makerdao/sdai/tree/e1d160aba17e95e8cec3d6bf50f310fbed9f28d6
https://github.com/makerdao/sdai/tree/e1d160aba17e95e8cec3d6bf50f310fbed9f28d6
https://chainsecurity.com

or msg.sender must have an allowance of owner to spend the sNST. Emits the Transfer and
Withdraw events.

• redeem(uint256 shares, address receiver, address owner): Redeems the given
amount of sNST of owner. Owner must be msg.sender, or msg.sender must have an allowance
of owner to spend the sNST. Transfers the corresponding amount of NST to receiver. Emits the
Transfer and Withdraw events.

Additionally, the following functions have been added:

• deposit(uint256 assets, address receiver, uint16 referral): Wrapper for the
default deposit() function, additionally emits the Referral event.

• mint(uint256 shares, address receiver, uint16 referral): Wrapper for the default
mint() function, additionally emits the Referral event.

View functions related to EIP 4626:

• asset(): returns the address of the NST.

• totalAsset(): returns the totalSupply of sNST converted into NST.

• convertToShares(uint256 assets): returns the amount of shares the contract would
exchange for the amount of assets provided.

• convertToAssets(uint256 shares): returns the amount of assets the contract would
exchange for the amount of shares provided.

• maxDeposit(address): hardcoded to type(uint256).max;.

• previewDeposit(uint256 assets): returns the number of shares one would receive for this
amount of assets at this block.

• maxMint(address): hardcoded to type(uint256).max;.

• previewMint(uint256 shares): returns the amount of assets needed to mint the given amount
of shares at this block.

• maxWithdraw(address owner): returns convertToAssets(balanceOf[owner]);, the
maximum assets this address can withdraw.

• previewWithdraw(uint256 assets): returns the exact amount of shares that would be burned
if the caller withdraws this amount of asset in this block.

• maxRedeem(address owner): returns balanceOf[owner], the maximum amount of shares this
address can redeem (its current balance).

• previewRedeem(uint256 shares): returns the amount of assets the caller would receive if he
spends this amount of shares in this block.

The calculation of the view functions is real-time since they calculate the current rate accumulator chi
based on the time elapsed between the current block timestamp and the last update (rho).

All standard ERC-20 functions (transfer, transferFrom, approve) are implemented. Savings NST
extends the ERC-20 features with ERC-2612 (Permit Extension) and further ERC-1271 (Standard
Signature Validation for Contracts). Two entry points for the permit functionality are available allowing to
pass either the aggregated signature as bytes or v, r and s separately. Signatures for permits can either
be from EOAs or, using ERC-1271, be validated by a contract that allows contracts to act as they
"signed" permits.

Furthermore, the following permissioned functions, callable by addresses bearing the ward role, are
available:

• rely(address usr): Adds an address to the wards mapping. Emits the Rely event.

• deny(address usr): Removes an address from the wards mapping. Emits the the Deny event.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• file(bytes32 what, uint256 data): allows to update the savings rate parameter (nsr).
Enforced to be >= RAY. Emits the File event.

2.2.2 Upgradeability
sNST inherits from Openzeppelin's UUPSUpgradeable which provides all functionality for UUPS Proxies
implementation contracts to facilitate upgradeability.

sNST overrides _authorizeUpgrade() adding access control to restrict implementation upgrades by
wards (assumed to be the Governance Pause proxy exclusively) only. Furthermore
getImplementation() has been added returning the address of the current implementation which is
retrieved from the defined storage slot.

For the sNST Proxy the widely used OpenZeppelin implementation of ERC1967Proxy is used. All calls
are executed as delegatecall to the implementation contract, the address of the implementation contract
is stored at slot calculated as
bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)).

2.2.3 Deployment
Savings NST is deployed in two steps:

1. Some EOA deploys the contracts (sNST and a ERC1967Proxy). The owner of the proxy is
switched to the PauseProxy.

2. A governance Spell with quorum executes the initialization of the contracts through the
PauseProxy.

SNstDeploy implements deploy() which deploys the implementation contract sNST and an
ERC1967Proxy. The constructor parameters are nstJoin (passed as input parameter) and VOW
(queried from the hardcoded chainlog address) for the sNST implementation contract. For the proxy, the
constructor parameters are the address of the newly deployed implementation contract and the function
selector of initialize. After deployment, the owner of the Proxy is switched to the Governance
PauseProxy.

During the governance spell, the following sanity checks are performed:

1. The version of the implementation is ensured to be Version 1.

2. The implementation is validated to be the expected address of sNstImp

3. The sNst instance's VAT, nstJoin, nst and VOW addresses are validated to be the expected ones.

After the sanity checks, the following actions are performed:

1. The nsr is set.

2. sNST is added as ward in the VAT.

3. The addresses of SNST and SNST_IMP are added to the chainlog

2.2.4 Changes in Version 4
NST has been renamed to USDS. Hence, sNST has been renamed to sUSDS. Additionally, drip is now
called before setting the savings rate in the initialization script.

2.2.5 Changes in Version 5
As of this version, a new SUSDS token contract is introduced to be used as the L2 token for SUSDS.
Different from L1, the SUSDS on L2 is a standard UUPS upgradeable token without staking logic. The
implementation is a common ERC-20 token (same implementation as the USDS contract with renamings
to sUSDS, see audit report).

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 8

https://www.chainsecurity.com/security-audit/nst-smart-contracts
https://chainsecurity.com

Note that the deployment script for the L2 token is slightly different from the L1 token. The process is
described below:

1. Deploy the L2 SUSDS contract as the implementation contract (same as for the L1 token).

2. Deploy the ERC1967Proxy contract and initialize the contract. The implementation contract is the
deployed L2 USDS contract (same as for the L1 token).

3. Switch the owner to the intended owner (same as for the L1 token).

4. Note that in contrast to the L1 token, no init script is provided. Namely, that is due to the L2 bridge
spells performing rely on the tokens (bridge is minter, see for example OP Token Bridge).
However, some sanity checks are not performed and should be performed by governance before
voting on a spell (e.g. version check, implementation check).

2.2.6 Roles & Trust Model
Wards: Privileged roles in the SUSDS contract. Fully trusted. On L1, it is expected to be the Governance
PauseProxy only. On L2, it is expected to be the L2 Governance Relay and the L2 Token Bridge.
Addresses holding the ward role can update the implementation of the Proxy and hence change the
behavior and state of the contract. Further, wards can add/remove more wards and update the ssr
parameter.

Users: Users interacting with the public functions of the system. Untrusted.

Deployer: Executes the deployment scripts deploying the contracts. Untrusted, governance must inspect
the deployment before accepting the initialization vote.

Governance (DSPauseProxy): Fully trusted. Must verify the deployment and initialize the system with the
correct parameters.

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 9

https://github.com/makerdao/op-token-bridge/blob/a01b8725f20896390e63a6f65b109c25f8fb823c/deploy/L2TokenBridgeSpell.sol#L53
https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 1

• Code CorrectedDiscrepancy With NST

6.1 Discrepancy With NST
Informational Version 1 Code Corrected

CS-SNST-003

Parts of the functionality of the sNST should be identical to the corresponding implementation in the NST.
However, there are a few discrepancies:

1. _isValidSignature: The NST checks that the code size of the call target is greater than zero
before the static call isValidSignature is made. Additionally, encodeWithSelector is used
instead of encodeCall.

2. Additionally, the comments arguing about the safety of unchecked operations are missing in the
sNST contract.

While the impact on security is minimal, consistency between the contracts could help.

Code corrected:

The code has been updated to align with the NST code.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 More Events in Initialization Possible
Informational Version 1 Acknowledged

CS-SNST-001

The initialize function only emits the Rely event. However, for the initialization of nsr and chi
events could be emitted (File and Drip respectively).

Acknowledged:

MakerDAO replied:

This is the typical pattern in Maker's constructors, to usually just emit the Rely event.
We are aiming for the initialize function to resemble that. We don't view it as very
important either way.

7.2 Vow Immutable
Informational Version 1 Acknowledged

CS-SNST-002

The sNST contract has an immutable vow which is inconsistent with other contracts that, in contrast,
have a mutable vow. However, due to the upgradeable nature of the contract, the vow can still be
updated by a contract upgrade.

Acknowledged:

MakerDAO replied:

The chances to update vow exist but they are really low (never happened so far).
As sNST is upgradable we can still update it through changing the implementation in case is needed.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Deployment Verification
Note Version 1

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly. While some variables can be checked upon
initialization through the PauseProxy, some things have to be checked beforehand.

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar. This is especially crucial for any value stored in a mapping array or
similar (e.g. could break access control which could lead to unexpected contract implementation
upgrades and hence result in stealing of funds).

Additionally, it is of utmost importance that no allowance is given to unexpected addresses (e.g. NST
approval to arbitrary addresses could have been given in the constructor).

8.2 Deviations From ERC Standards
Note Version 1

Parts of the code technically do not satisfy certain ERC standards and deviate from the specification.
Note that these deviations are common.

As noted in the readme, the following proxy scheme is implemented:

The token uses the ERC-1822 UUPS pattern for upgradeability and the ERC-1967 proxy storage slots standard.

These standards have conflicting specifications, furthermore, the OZ implementation used does not
follow ERC-1822 strictly. Note that the ERC-1822 specification contradicts itself in various parts.

• Using the storage slot defined in ERC-1967
(bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)) to store the
implementation address contradicts the ERC-1822 specification which requires the address to be
stored at slot keccak256("PROXIABLE").

• proxiable() and updateCodeAddress() are not implemented. However, note that while the
standard specifies proxiable(), proxiableUUID() is used in the sample implementation.

• proxiableUUID is implemented and returns the address of the implementation stored at the slot
defined by EIP-1967, not EIP-1822 (which corresponds to the slot actually used).

Similarly, the specification of the permit functionality (ERC-2612) may only approve if and only if:

r, s and v is a valid secp256k1 signature from owner of the message

NST extends the idea of ERC-2612 by also accepting "signatures" from smart contracts according to
ERC-1271 (Standard Signature Validation Method for Contracts) and hence this may not hold. Note that
other token contracts such as Lido's stETH or USDC have a similar deviation from EIP-2612.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8.3 Drip Before Changing NSR
Note Version 1

Governance should be aware that in governance spells drip() should typically be called before
changing the NSR with file(). If not, some unexpected behaviour may occur. For example, chi could
increase too much (or not enough).

As of Version 3, it is enforce that drip() has been called before file() and, thus, the side-effects
cannot occur anymore. As of Version 4, the init script calls drip() before the file(). Thus, it is not
required to call it separately.

8.4 End Considerations
Note Version 1

Governance should be aware that, in case of a governance-assisted shutdown, the sNST should be
handled. For example, the NSR could be set to one (RAY) to not generate any further yield.

MakerDAO - Savings USDS - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 sNST
	2.2.2 Upgradeability
	2.2.3 Deployment
	2.2.4 Changes in Version 4
	2.2.5 Changes in Version 5
	2.2.6 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Discrepancy With NST

	7 Informational
	7.1 More Events in Initialization Possible
	7.2 Vow Immutable

	8 Notes
	8.1 Deployment Verification
	8.2 Deviations From ERC Standards
	8.3 Drip Before Changing NSR
	8.4 End Considerations

